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ABSTRACT OP THE DISSERTATION

Nonlinear Statistical Estimation
with
Numerical Maximum Likelihood

by

Gerald Gerard Brown
Doctor of Philosophy in Management
University of California, Los Angeles, 1974

Professor Glenn W. Graves, Chairman

The topics of maximum 1likelihood estimation and
nonlinear programming are developed thoroughly with emphasis
on the numerical details of obtaining estimates from highly

nonlinear models.

Parametric estimation is discussed with the three
parameter Weibull tamily ot densities serving as an exaaple.
A general nonlinear programming method is discussed for both
first and second order representations of the maximum
likeiihood estimation, as well as a hybrid of both
approaches. A new class of constrained parametric
estimators is introduced with numerical methods for their

determination.

Structural estimation with maximum likelihood is

examined, and a Bernoulli regression technigue is presentegd.
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CHAPTER I

¢ A

{ & This dissertation is concerned with a class of probleas
¢ of ULasic importance in applied statistics - the estimation

of parameters in a complicated model where simple closed
: 3 form estimators do not exist and it is necessary to resort

to numerical methods. Many existing numerical apprcaches

Gt i S S e i

prove to be of 1little practical value in the context of
these actual cases because of convergence problems. The
z main purpose is to develop new numerical techniques by

1 comkbining recent developments in the theory and practice of

optimization with statistical theory and to demonstrate the
| efficacy of these methods by application to the srpecial
< class of «complicated, highly nonlinear problems arising in
statistical estimation. The applications are addressed
primarily to maximum likelihood estimation, and the new

methods are compared where fossible to previous recsults.

z The general numerical technigue developed is also used to
solve a new class of estimation problems with nonlinear
constraints on the parameters. The numerical approach is
further utilized to provide an alternative to least syguares

z regression, especially for problems with discrete dependent

variables.

J The present chapter reviews the mathematical foundation

' for statistical estimation for poth density functions and

] structural models, and provides justification for use of
maximum 1likelihood estimation. Chapter II presents a 5
history cf nonlinear progqramming with both search and ascent

b
;
1 ¥ methods, with emphasis on numerical performance £for highly
f nonlinear olLkjective functions., Cpapter III introduces the
E
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maximum likelihood estimation problem for the parametric
Weibull family of density functions. The new techniques of
the dissertation are developed and demonstrated. A new
class of constrained n~aximum likelihood estimators 1is
proposed with sample probiems. Chapter 1V addresses a class
of regression models in which the dependent variable is a
Bernoulli observation, develops a statistical theory for
solutions of the model and gives a numerical example.
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B. INTRODUCTION TO STATISTICAL ESTIMATION THEORY

A classical area of intense interest in statistics is
the art of wusing sampling dinformation to make wvaliid
inferences aktout unknown parameters in the distcibution of a
population under study; this body of technique, motivated by
the mathematical theory of statistical estimation put forth
by Fasher[86], can be applied in several ways to any given
sample producing various estimates of the fparameters, and
leaving wus with the problem of selecting a "good" estimate

from among the possibly infinite number of competitors.

An investigator 1is apt to feel tha£ a "good" estimate
is obviously that which is closest to the true parameters.
However since the estimator is a mathematical function of
the sample ( a statistic ) it is itself random from sample
to sample, so that the attractiveness of a particular
randomly distributed estimator will depend upon the long run
char. .teristics described by its sampling distribution. For
instance, if the sampling distribution of an estimator for a
parameter vector has a great deal of its probability
concentrated in a very small neighborhood of the true
parameter, and a competing statistic does not, we would
probably find the rformer estimator to be "better" than the
latter for purposes of valiad inference. That 1is, the
probability cf an estimate being close to the true parameier
is higher in the former case, so we use that particular
method with cur sampling information. Unfortunately, there
is seldom a gquarantee that a statistic will be '"good" for
every sample, or even that it will produce useful or
intuitively acceptable estimates. Therefore, one must
choose an estimator on the basis of its long run properties
relative to those of feasible alternative estimators and in

the context of each application.
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In order to formalize some of these concepts of

th
Ngoodness," let us define the J observation of an
m-dimensional vector, Xj, as
x = { x ' l.l' x } ' j=1'2' II.'n ;

3 i1 jm

with X rowv j of X, the observation data uatrix.
J

It should be made clear at the outset that if the
successive observations in X are not random, then e nmust
know the precise nature of the sampling procedure which
leads to this non-randomness for the observations, or very
little inference is possible, For this reason, X is assumed
here to result from random sampling from a population with a

single set of parameters, T.

For purjoses of parametric estimation, we must know, or
have assumed hypothetically, the precise mathematical form
of the distribution of each observation of the Gparent
populaticn. Therefore, let

£ (X, ,T) .
i o3

represent thnis density, with

T= t s e e t
(1' ’ k) ’

a set of * columns of unknown parameters to be estimated and

f non-negative over the region of admissible ranges of X
] ]
and T.
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Point estimation, then, 1is the interpretation of a
statistic, ?, computed from X as a vector of constants which
can be assumed as the inferred value of P; interval
estimation is the specification of an intervai such that a
known proportion of such intervals contain the parameter T.

For simplicity of exposition, let us assume that £ = £

for all j, and romentarily that k = 1. Then, let Q(n) be a
statistic to be used as an estimator of t based on a randouw
sample of size n. It is reasonable to assume that the cost
of obtaining the sample 1is some monotonic increasing
function of n, and thus that the economic Jjustification of
Q(n) depends upon how "good" it is as a function of n. 1In
this context some of the following measures cf desirability
of estimators are proposed as functions of sample size, and

thus cost.

1. Existence

It 1s always necessary to be able to demonstrate that a
particular statistic exists with its attendant
properties for a given sample space, probakility
distribution, and so forth.

2. Simple Consistency

A statistic is simply consistent if for any arbitrarily

small positive constants ¢ and d there is a sample size
N such that

A
Pr{it(n) - t] < c]> 1 -4, >N .
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3. Sguared Error Consistency

A statistic 1is sai¢ to have squared error consistency
if for any arbitrari.y small constants ¢ and 4 and some

positive integer n,

A 2
Pr{(t(a) - t) <c]>1-4a, mN.

Some probabilists view these consistency properties as
special cases of stochastic convergence under
particular noras. Both types of consistency are
desirable in the sense of early discussion in this
chapter, producing with high probability values of ?(n)
in a small neighborhood of t, but consistency 1is

achieved at possibly nigh cost.

4. PRias 4

A
The kias, b(n), of the statistic t(n) is defined
A
b(n) = E(t(n) - t],

with E the expectation operator. 1If b(n) = 0 for all i

n,

A
E[t(n)] = t

T

A
and t(n) is said to be unbiased.

A
If b(n) approaches zero as n increases, then t(n) 1is é
said to be asymptotically unbiased.

“Grnltinar

Unbiasedness 1is an intuitively desirable point

SRRISE

] property, but should not be confused with neighborhood




properties such as consistency; neither property

inplies the other. Further, b(n) can sometimes be
. A

determined, or estimated, and removed from t(n).

5. Variance

Tae variance of a statistic t(n) is defined

A A2 2 A A 2
Vit(n)) = E[t(n) ] - E{t(n)]= E((t(n) -t - b(n)) ] .
This may, or may not, be analytically available
depending upon the mathematical form of g(n) and £, but
it 1is a characteristic of the sampling distribution of
Q(n) and thus describes long range behavior of ?(n).

6. Mean Squared Error

A
The mean squared error of t(n) is defined as

A 2 A 2
M.S.E. = E[ (t(n) - t) ] = V[t(n)] + b(n) .
Ne s=2e that the M.S.E. and variance are identical for
unbiased statistics, and that for biased statistics,
the M.S.E. exceeds the variance.

7. Likelihood

A
For independent observations the likelihood of t(n) is
defined by Pisher[86] as

L(X,t) = £(X_,t)eeef (X ,t) ,
1 n

i i s o i
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and 1is regarded as proportional to the probability of

the occurrence of the vector, X, given parameter t.

8. Sufficiency

A statistic, Q(n), is said to be sufficient if it «can
be shown that the conditional probability distribution,
h, of any other statistic, g(n), given Q(n) does not
depend upon the parameter t :

~ A
h( t(n) | t(n) ) not a function of t .

A
Sufficiency for t(n) 1ia-lies that all the sample
A
information concerning t has been exhausted by t(n).

Such statistics exist for a very important family of
density functions including the exponential, binomial,
chi-square, gamma, and normal distributions. As we
shall see, a straightforward algorithm may be used to
identify sufficient statistics

9. Completeness

Let s(X ) be a continuous function of X . If
J ]
E[s(X ) )=0 for every admissible t implies that s(xj)=0

]

for all X then €£(X ,t) is a complete family of density
]

functions.
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10. Minisum Mean Squared Error

It has teen shown by Rao[196] and Cramer[58] that under
assumptions of regularity the lower bound for N.S.E.

of any statistic is

2 2 2
M.S.E. = =(1 + dbsdt) /E[J 1n(L)/dt ] .

The reqularity assumption disaliows discontinuities in
f that depend wupon t. This bound may or may not be
achievable.

For an unbiased statistic, this 1lower bound for

variance is

2 2
M.V. = -1/E{d ln(L)/ot ] .

11. Squared Error Efficiency

. A . . F L
A statistic, t(n), 1is relatively efficient 1f 1its
n
M.5.E. 1is 1less than that of a competitor, t(m), for a

given sample size:

A 2 v 2
E((t(n) - t) J<E[(t(m) -t) ].

We can also treat this as an asymptotic property of an
estimator. If the inequality ultimately holds for any
competitor we simply say that g(n) is asymptotically
efficient.

This 1is a very appealling relative measure of the
"goodness" of a statistic. It seems reasonable to

assume that the cost associated with an error in
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€stimation is an increasing nonlinear function of the
size of the error. For example, the effect of a small
error might well be unimportant. A large error, on the
other hand, might 1lead to significant costs due to
incorrect decisions based on the estimate. The precise
cost-error relationship would be most difficult to
specify mathematically. Assuming that the cost is a
quadratic function of estimation error gives a cost
function that is tractable mathematically, and vweights
larger estimation errors more heavily than small
erroirs. Thus, with this assumption, a <choice of
estimators on the basis of relative efficiency becones

a choice of minimum expected cost,

12. Unigqueness

For purposes of inference, it is desirable but often
impossible to demonstrate that the statistic used

uniquely satisfies its own definition.

13. Asymptotic Normality

An estimator is asymptotically normal if its sampling
distribution approaches normality with 1increasing
sample size. This property gives a statistical
foundation for making the probability assertions
required for interval estimation; it obviates the neeg,
case-by-case, to treat a statistic as a mathematical
transformation applied to the random variables in each
sample and attempt to use statistical transforasation
methods to derive a sampling distripbution for Q(!,n) in
closed fornm. In fact, such an analytic derivation is

frequently mathematically impossible.

10
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To use the property of asyuptotic normality fol

interval estimation, we require knowledge of the first

two moments of the estimator so0 that the paramet«rs of
the normal distribution may be obtained{d4]. In sonme i
instances these cannot be obtained analytically, as is /

4

shown by Mann, Schafer, and Singpurwallaf 161,p.263].

T T
o e

(¥4

14. Best Asymptotic Normality

A
A statistic, t(n), 1is Best Asymptotically Normal, 3

B.A.N., if it 1is simply consistent and @(n) o ]
approaches a normal distribution with zero mean and a :
: variance less than that of any competitor with ;
_’ asymptotic normality over the same open interval for t.
] (In %is introduction of B.A.N. estimators, Neyman{172]

ot Gives a more general set ot existence conditions in the ;
| context of continuous data grouped into classes.) Note
that B.A.N. estimators are not necessarily efficient, g
: or unique, but that they are asymptotically unbiased, ,
i; and of course offer the advantages of asymgtotic ?
% g norsality previously discussed. j
~" 5
]
i

Finally, with suitable notation adjustments, all these
characteristics of point estimators generalize to the E
multidimensional estimation case, k > 1. For instance, the
E variance should be notationally replaced with a

variance-covariance matrix, Y.

A A
¥ = E[(T(n)-T) (T(n)-T)']

1 1
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The art in statistical estimation is as much the choice

of an estimator as its mathematical derivation for a given
protlen. Although a myriad of estimation techniques have
been proposed in ¢the 1literature, only those generally
applicatle to the problems to be considered here are
introduced. Noted by their absence are Bayes estimators,
formulated from his idea[ 15] of using prior information, but
which do not apply to a constent vector, T, and exist only
for very restricted choices of prior multivariate density
for T, and Minimum Chi-Square estimators, M.C.S., discussed
at length by Rao[196], which apply to continuous data
grouped 1into classes, and are very similar in poth
determination and asymptotic properties to the waximum

lixkelihood estimators, which are presented shortly.

L 4
Moment Estimators, T(n), proposed by Pearson{ 133], are

formed 'ty equating the sample moments of X with its
theoretical moments stated 1in terms of the parameters, T.

[ ]
The solution for T(n) may not be possible in closed form for
[ ]
many density functions, and T(n) is not necessarily unique
IOr any given sample, however Pearson introduced a 1large

fanily of special distributions which yield solutions for

®

T(n). Moment estimators are usually consistent in both the
simple and squared error sense, asymptotically normal, but
not b.A.N., and can be efficient only when the variance of

X domindtes higher moments of £, as is true with the normal
®
distribution. 1In general, T(n) has few advantages over

common ccmpetitors for any particular density function, £,

12
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ana the disturbinyg habit of frequently producing
outrageously bad estimates, even inadmissible ones. The use
of momenrt estimators by Pearson and others has been largely
restricted to the more specialized problem of choosing both
a mathematical rform for f when none is known, and estimation

of resulting parameters.

v
Sufficient statistics, T(n), have been demonstrated by

Firke:[80] and Neyman[174] to exist for any density for
vhich the likelihood function may be partitionea into

v
L(X,T) = H(T(n),T) K(X)

with H an exclusive nontrivial functioa of ;kn) and T, and K
free of terms or constraints involviung T. v} condition
implying existence of a sufficient statistic, T(n), 1is that
f belong to the Koopman-Pitman exponential tanmily[ 142,180

such that £ may be stated
f(xj,T) = eXPCP(T)m(Xj) 4 S(Xj) + q(T) ]

with p(T) a nontrivial continuous function of T, s(X ) and
J

(X ) continuous functions of xj, dm/dX +# 0, and the range
]

of X independent of T.
J

Sufficient statistics are of strong intuitive appeal
since they demonstrably use all of the sample information
availahle. The algorithm for rinding a sufficient statistic
is straigyhtforward, 1leading immediately either to the
establishaent of suach a statistic, or a proof that no
sufficient statistic exists (128,p.231, 141,p.26].
Unfortunately, sufficient statistics are not necessarily

consistent, unbiased, or efficient.

13




v
Any nontrivial one-to-one transformation of T(n) 1is

also sufficient for T. Therefore, whenever possible we
choose an estimator from this infinite family of sufficient
statistics in order to achieve one or more additional
desirable properties such as concistency, miaimum variance,

or most often unbiasedness.

A Minimun Variance Unbiased Estimator, M.V.U.E.,
discussed by Rao{195] and Blackwell[24], 1is always a
function o0f the sufficient statistic, and is found as the
conditional expectation of any statistic which 1s unl.iaced
for T, given the sufficient statistic, g(n). The M.V.U.E.,
when it can te derived via the conditional density required,
is necessarily simply and M.S.E. consistent, and the most
efficient unktiased statistic for any sample size. Further,
if the density function is complete, the M.V.U.E. is
unique[ 128,p.229]. The mathematical details of deriving the
M.V.U.E. are arduous, but the statistic is desarable
especially fcr small samples where bias and/or M.S.E. are
high for most competitors. A pminimum M.S.E. statistic
provides a tradeoff by minimizing the sum of variance and
sqyuared Lias, and can be preferable to the M.V.U.E. when
unbiassedness is not absolutely essential. Unfortunately,
wmininum M.S.E. statistics are only rarely derivable for
finite sample sizes, and when found often correspond to the
M.V.U.E. result. For instance, the samgle mean from a
normal distribution can be shown to be both a M.V.U.E. and

minimum M.S.E. statistic.

Maximum Likelihood Estimators, M.L.E., suggested by
Fisher({ 86], are found by maximizing the likelihood function
L(X,T) ¢ty cRoice of T. These intuitively appealing
estimators, T(n), can often Le derived in closed fecrm by
differential calculus, and dalwayvs exist under mild
regularity conditions. Although ?(n) is frequently liased

for small samples, it is asymptotically wunbiased, B.A.N.,

14
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and simply and squared error consistent as shown by
daldf 225,224]. It \is also asymptotically efficient,
ultimately achieves the ninimum variance bound, and can be
shown to be a function of the sufficient statistic, if one
exists. Even for relatively small saaples, the M.L.E. can
be more efficient than the M.V.U.E., as has been shown by

Brown and Rutemiller[ 31].

Rde o L e - s el e . e it Al e i) i,

M.L.E. also have an important invariance property. For
any non-trivial functiou of T, u(T), with a single-valued
3 inverse,

A A
u(T) = u(T(n)) .

For example, invariance permits transtformations to reduce

bias without sacrifice of other desirable F.L.E. properties.

This property is an indispensable tool in mathematical
modelling. Since parametric estimation is usually performed
only as a preliminary part of a larger investigation,
invariance 1s crucially important, permitting M.L. point
estimates to be unconditionally intrcduced into any
admissible function of the associated parameters, with the

function directly inheriting all the desirable M.L.

properties. This permits analysis of complex hierarchical

systems to be conducted in a straightforward manner.

Asymptotic normality for all M.L.E. makes them very

;3 useful for interval estimation, especlally in the

] ; multivariate sense. Unfortunately, M.L.E. can not, 1in

;“ 7 general, be guaranteed to be unique, although unigqueness can

' be established on a case-by-case basis. Although npumerical
{ determinaticn of M.L.E. can at worst bre exceedingly
; difficule in practice, the "good" vproperties of these
estimators make them so singularly attractive in the general

field of statistical estimation as to motivate the

B
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investigation in this thesis.
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Suppose we examine a model in which the population mean
is not strictly a function of T, but rather a particular
mathematical function of the population parameters, T, and
some observed constants, X. If we define our sampliug
process to be the measurement, with some random errcr, of
observations, Y, from populations whose parameters depend on
X and T, then a problem which results is the estimation of

the parameters, T, based on tne saample

fY , X} ,
by use of the relationship
Y = Y(T, X, e),

and known information about the nature of the error, e.

This technigue is known as regression.

One example of such a model 1is <classical 1linear

regression, where
Y = XT + e .

Y

Since Y-XT(n) is the sample estimation error in the model
1y

for the estimator T(n), the wusual approach to this

estimaticn is to assert a quadratic cost function and

minimiz~e the scalar sum of squared deviations
(Y-XT)* (Y-XT)
by choice of T. This technique was first suggested for use

in interpolation of planetary data by Legendre[150].
Provided that X'X is non-singular, which requires n > Kk,

17
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this guadratic objective function has a unigue solution,

~ -1
T(a) = (X')  X'Y.

This Least Squares, L.S., estimator is attractive to use for
linear models. The L.S. solution is the best linear
unbiased estimator, B.L.U.E., 1in the sense that among all
untiased linear combinations of X this estimator has minimum
variance regardless of the distribution of e. Gauss[95] has
shown that when e 1is normal the L.S. solution always

maximizes the joint density

f(y IX ,T) eee f£(y |X ,T) .
1 1 n n

This remarkable demonstration both anticipates the later
discovery of M.L.E. and shows that in the normal case, the
linear model has a single solution which is both L.S. and
M.L.E. The distributional theory for interval estimation in
the 1linear model is presented by Cochran{51], and is based
on the unique class properties of the mwmultivariate normal
density, which is closed for affine transformations,
convoluticns, and linear mixtures of normals, and the class
of chi-square distributions of quadratic normal forms, which
is closed for convolutions.

The assumption of normality for e and linearity are
crucial to the L.S. approach, since for non-normal, or
non-linear models the distributional results tail. In fact,
the specification of a quadratic cost criterion for L.S.
minimization is not necessarily justifiable in all
applicaticns; for instance, mean deviation, or minimax
(Tchebycheff) deviation might sometimes be more reasonable.

A general M.L.E. approach tc regression focuses

attention on the density of e to specify the likelihood

18
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function
1T L(Y1X,T) ,

vhich is maximized by choice of T. It is not necessary to

: i derive L(Y|1X,T) from Y(T, X, e) if one can state the density
| 3 directly as in the case of Bernoulli regression examined in
Chapter IV. The M.L.E. solution has all the properties

under cconditions mentioned previously, regardless of the

form of the model, although those that are asymptotic are

3 achieved more slowly for highly non-linear models or

extraordinary distributions for e. Sprott and
Kalbfleisch{ 217) have examined for some specific models the
robustness of the assumption of asymptotic norrality made

l 5 for several finite sample sizes.

b

A et Pt 1Ry

19

T T




Gtz

g i da

B o el

Al S e i M,Sy-‘ﬁ :xﬁ’»".vv"w!; o 2 ML 2 A kb i L S Lo R S0 L e dlta ol T A My YT

E. SUMMARY: JUSTIFICATION OF M.L.E.

As we have seen, the M.L.E. usually have, for large
samples, all the desirable properties of an estimator. They
almost always exist under very mild regqularity conditions,
asymptotically they are consistent, unbpiased, efficient,
B.A.N., achieve the Cramer-kao minimum variance bound, and
they are sutficient statistics whenever such statistics
exist. They can often be derived in closed form by
differential calculus, and in other cases, the estinmator may

be solved for by numerical techniques,

When pcint estimates of functions of parameters are
required in a mathematical model, it is pointless to choose
estimators for their "good" properties unless the function
will also possess those properties. 1In practice, the M.L.E.
are the only available estimators with so many desirable
properties that are all invariant under such
transformations. As mentioned earlier, this invariance
property of M.L.E. is vital in complicated problems where
parametric estimation is only the first step of

investigation.

Best of all, M.L.E. provide a distributional basis for
interval estimation which does not depend upon simplifying
assunptions such as those reguired for the L.S. approach.
This is fortunate, since in models which are non-normal,
non-linear, or, more often, both, the ¥.L.E. provide the
only reasonable estimation alternative. Also, for the
classic 1linear normal nmolel, the M.L.B. provides the L.S.

solution.
For small samples, the M.L.E. have many of the good

estimator properties, and are often the best statistic
available. Their M.S.E. 1is fregquently the best among

20
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competitors, even for very small sample sizes. The M.L.E.
are extremely useful in small sample estimation as a
starting point for seeking better statistical estimators for
particular density functions. The M.L.E. are always derived
by exactly the same method, requiring less intuition, skill,
or plain luck than the intricate schemes leading sometimes
to, for instance, an M.V.U.E. In some statistics texts, in
fact, M.L.E. are the only estimators introduced since they
are generally easy to find and usually produce Letter
estinates than other methods[156,p.162].

Among alternative estimators for any given problem, the
M.L.E. nearly always provide a very good property set that
gets better very quickly with increasing sample size, and
becomes asymptotically best. For those cases in which the
M.l i B must be determined numerically, a potentially
difficult nonlinear programming problem results.

N LT g 7
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CHAPTER II

Ei NOMBRICAL TECHNIQUES OF ESTIMATION

A. INTRODUCTION IO NONLINEAR NUMERICAL ESITIMATION

In the previous chapter ve have proposed a
statistically desirable nonlinear estimation method, M.L.E.,

E which leaves us with the problen

FJ
) A .
MAX( L(T) )

The form of L depends upon the model used. Estipation

of density function parameters for f gives

L(X,T) = f(X1,T)°'0f(X 'T)
n

and estimaticn of parameters for a structural model gives

L(XY4x,7) = f(Y|X1,T)OOOf(Y|X «I) .
n

In either case, L is known to be a highly nonlinear function
of the decision variables, T. Since X and Y are treated as
constants in these two models, they will not be included 1in
the further notation of this chapter, so that both

estimaticn mcdels may be treated at once. Thus

L(T) = £ (T)eeef (T) .
1 n

Mathematical constraints may be present for the

parameters., These may be simple numerical range

oy
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constraints, upper and lower bounds, for instance

l_ st_ Su. ,i=1’ e oo g k r
1 1 i

or @more complicated joint functions of T, equality

constraints cf the fornm

91('1') =0,

or ineqguality constraints such as

T) €< 0.
92()

The set of both types of constraints is referred to
collectively as

g'(T) = {9;(T)v QE(T)} '

g(T) <0 .

We refer to the conditioned set of all values of T which
simultancously satisfy the constraint set, g(T), &as the
feasible region tor T, and values of T within that region
are called feasible points. A particular constraint that is
exactly satisfied by T (a row of g(T) exactly equal to zero)
is said to be active. If, for all possible pairs of two

feasible points, ‘1‘1 and TZ, the convex combination
T = aT1 + (1 - a)T2 ¢ 0 £ a <1,

is also feasible, then the feasible region is called convex.

For M.L.E. problems, there are frequently simple

23
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numerical bounds placed on T. These are usually included to

insure the definition of a valid density function, f.
However, general mathematical ccnstraints are seldon
present. For this reason we will initially emphasize the
: unconstrained M.L.E. problem and the techniques available
; for its solution.

The first step in formulating an M.L.E. problem for
solution is usually the replacement of the 1likelihood
function, L, by its logarithm, 1n[L]. It 1is easy to see
that

e e b

;; H%X{ L(T) } , and H%X[ In(L(T) ]} »

are both achieved by the same value of T, since the
logarithn is a monotonic increasing function of its

oo, L

argument. The log-likelihood function becomes

1a[L(T) ] = 1n{£ (D) J+...+1n(£ (T)] ,

This reformulation usually gives an alias for L(T) which is
a mathematically simpler function. For instance, members of
the Koopman-Pitman family of density functions are
remarkably easier to deal with in this foram. This is
advantageous for both analytic and numerical work. For
instance, since L(T) is the product of n sample likelihooads,
its wvalue for many problems, especially for large n, can
numer ically violate the expressiktle range of floating point
representaticn on a particular digital computer.

We henceforth treat L(T) as the objective function, in
either the 1likelihood, or aliased 1log-likelihood fornm.
Further, we assume where necessary that L(T), and thus f(T),
are continuous, twice differentiable functions of T at
interior points. This 1s a very weak restricting assuaption

LS
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for M.L.E. models, which very seldom have discrete

parameters, T, and rarely have non-differentiable density
functions (poles, etc.) for realistic problems in which M.L.
estimation is attempted. It is not necessary in a
mathematical programming sense to emphasize the statistical
relationship of the M.L.E. and sample size, so it is assumed
notationally that

A A

T = T(n) .

A stationary point of L(T) is characterized{21] by the

3 . 3 . A
necessary condition that the gradient vanish at T,

A
VL(T) = oL(T T =0 .
(T) = 2L(MAAT | _A

Necessary conditions for a lcocal maximum are that
A
VL(T) =0 ’

and that the symmetric Hessian matrix,
2
H=1(h } = (L(T)/0t at 1} ,
ij i j

3 . - . . - A -
be negative semidefinite at a stationary point, T; that 1is,

for any vector 2z not identically zero,
A
z'H(T)z € 0 .
A vanishing gradient and negative definite Hessian

A A
VL(T)=0 ¢& 2z'H(T)z < 0 ,

provide sufficient conditions for a local maximum of L.




If the Hessian can be shown to be negative definite for
all feasible points T, then L 1s said to be concave[19], and
a statlionary point, Q, is the unique global maximum. Other
characterizations of stationary points of L are possible;
these other cases are of 1little general use and usually
require further assuaptions for identification of maxinma,

such as higher-order derivatives[208].

Characterizations of extrema of L(T) in the presence of
equality constraints requires that the gradient vanish while
all the equality constraints simultaneously hold.
Lagrange[ 147 ) expressed these conditions by introducing an
r-dimensional vector of arbitrary aultipliers, 01, and

augmenting the objective functicn of the problem to include

the constraints, giving

MA - a! '
T,i(x[L (T) uld, (7))

vhich, as previously shown, 1is stationary if

v Lfr\ ' ? 06r <k
Tu[() u191()] r £k,

’

and a local maxima under conditions for the Hessianr similar
to those for the unconstrained problem, but modified by the
dimensionality adjusctment. John[135], and later Kuhn and
Tucker[ 146], have generalized the necessary conditions to
inequality constraints as follows, letting u2 be a vector of

with
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T)<0, u <0, u! (T)=0 .
92( ¢ ) ’ 292( )

The 1last condition 1is referred to as complementary

slackness.

For maximization problems subject to mixed constraints,

with multipliers defined

ut = [u;, u;} ‘

necessary conditions for a local constrained maximum are:

A A
VT[L(T) -u'g(T)] =0,
Q =0 ? <0 <0 ' ? =0
91()“192()-0 uz—r ngZ( )=0 .

Local sufficiency foc these conditions further requires that
the constrained objective function be locally concave, tnat
all nonlin:ar inequality constraints be convex, and that all
equality constraints be 1linear. It may be possible to
generalize local sufficient conditions, subject tc the
Kubhn-Tucker restrictions, for nonlinear equality

constraints.

John[ 135] actually developed conditions requiring that
the objective function also have a multiplier, and Kuhn and
Tucker{ 146 ] qualified admissible constraint sets to those
without singularities on the boundary such as an outward
pointing cusp, or other nonlinear degeneracy; 1in these
cases, the nultiplier proposed by John is positive, and can
in fact be normalized to unity. Their development defines

the Lagrangian objective function
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A =
and specifies that if a stationary point (T,u) 1is also a

saddle pcint, that is

u%xj[r,u*] =;["1'\,u‘] = ulxxuj(?,u] ,

A *x
that under the mild assumptions, the point (T,u ) 1is a

solution to both the primal and dual problems, given
respectively at the left and right above. This also
suggests that methods for solution of the primal problem can
sometimes profit froam information gained by simply
examining, cr shifting emphasis completely to the dual. wWe
might intergret the primal optimization process as
maximization subject to feasibility with respect to
constraints and the dual optimization process as
minimization of infeasibility, subject to a stationary

primal profit criterion.

Purther characterizations under varying sets of
assumptions and useful simplifying qualifications have been
given by Mangasarian and Fromovitz[159], Arrow and
Enthoven[6], Arrow, Hurowicz and Uzawa{7], Kortanek and
Evans{ 143], and Wilde[ 230,231].

For many likelihood functions, @ may be determined in
closed form as a stationary point of L by differential
calculus. 1In such cases, demonstration of extremality and
unigueness fgroceed directly by analytic means as previously
discussed.

In general, hovwever, the stationary points of L must be
derived iteratively by the numerical wmethods of nonlinear

28
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prograaming. The general M.L. estimation problem has rather
distinctive features in this respect. The number of
decision variables, or parameters, is usually very small,
seldom more that three for density functions and ten for
structural @models. The objective function and especially
its gradient are highly nonlinear, expensive to evaluate
numerically, and difficult to coampute precisely. These
problems are exacerbated by large sample sizes. d1he
constraints are wusually of relatively simple form, often

just numerical bounds on T.
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The nonlinear programming methods which may be used for
M.L. estimation are all iterative schenes with the

following features. An initial value of T, ro, pust be

specified or guessed by the 1investigator. An iteration

mechanisa then chooses a step-size and direction for
determining the sequence

T T e o o T
o' 1' ’ n ’

such that

L(T') > L(T. )' i=1'2' e s o g ﬂ.
1 i-1

Finally, a set of termination states is specified.
Termination criteria commonly include a maximum value of m.
A stalling «criterion can be used for tolerance of
resolution, with 4@ a vector of arbitrary small constants,

|IT -T i €4 .
a m=-1

A performance criterion can be employed to insure acceptable
distinguishatility, or marginal improvement,

L(T )-L(T ) > minimal gain.
[} n-1

The ideal iteration scheme 1is a totally automatic

30
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algorithm in that the global solution is reached in a finite
number of steps without necessitating human intervention.
Unfortunately, no single method realistically qualifies on
this basis, especially if we define finiteness in terms of
exhausting a reasonable computer budget. Also, a qlobal
solution does not always exist 1n the strict sense for all
M.L. problems. 1In practice, even the attainment ot a local

maximum can be delightful.

A good iteration algorithm should not require excessive
computation time for termination. Neither should it dewmand
brilliant intuition, or extraordinary good fortune, on the
part of the user. Problem specificity of good iteration
performance is also undesirable, unless for demonstrable
cause of an apparent nature general enough to advise prior

choice of the method.

Thne taxonomy of iteration schemes 1identifies direct
search methods as those which achieve gains by experiment
wvith evaluation of the objective function, L(T). Ascent
methods, on the other hand, require 1local d:rivative
information to calculate a priori where each following
evaluation of the objective function should take place.
Ascent methods may be further subclassified as either direct
ascent, which =<seek immediate gains at each iteration, or
indirect ascent, which seek at each step to achieve the
necessary conditions for a maximum. Note that ascent
methods include those using finite difference approximations
to derivatives. Distinguishing between these tvo
classifications is at times most difficult, since +the
systematic experimental achievement of increases in the
objective function, L(T), by varying the argument, T, with a
direct search scheme is highly suggestive cf cognizance of
differential information indicative of an ascent method.
This interminable classification problem is obviated Ly the

plausible defense of nomistic innocence. Several classical
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technigues of both types that are available for finding t(mn)

when k=1, for instance golden section search, regula falsi,

and so forth[232,193], are not discussed here.
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The Hooke-Jeeves pattern search wmethod[129], perhaps
the simplest technique known, is a maximization scheme based

on direct evaluation of L(T). Given a starting point, To,
and stepsite, so, the iteration sequence proceeds by varying

each element c¢f T by one step in each direction and
evaluating the objective function, keeping each respective

element of T at the value which lead to a maximum. Thus, '1'1

will be at a corner of the k-dimensional hyperrectangle
defined by Togso. The scheme proceeds similarly wuntil no

further gain seems possible, in which case the stepsize 1is

halved, the process repeated to no dain, stepsize halved
again, and sc forth until termination 1s recognized within a

spall enough neighborhood.

Several heuristic modifications have been progosed,
inciuding a ridge-following "memory" for acceleration of
stepsize when an element of s continues step-to-step to
exhibit no change in =sign while sequential gains are
made[ 1293, a seguential transformation of coordinates in
order to minimize parameter interaction and separate the
effects of steps on the approximately orthonormalized
problem, linear nminimizations along estimated conjugate
directions, a restart procedure for avoiding local minima
and stalling, paraliel tangent acceleration suggested by
Shah, Puehler, and Kempthorne{210], quadratic approximation
with an interpolating polynomial over the 1local search
lattice, and introduction of random numbers to avoid dead
ends for the search. Such ad hoc modifications are found in
Fletcner(87), Zangwill{239], RrRosenbrock({206], Powell{190]},
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and Davies[66], who also describes response surrace direct

optimization schemes encountered in experimental design.

The simplex method, introduced by Spendley, Hext, and
Himsworth[216], generalized by Nelder and Mead(171], and
generally referred to as the simplical scheme so as not to
confuse 1t with the linear programming algorithm, uses k+1
points defined as a simplex 1in the k-dimensional search
space. At each iteration a new point is created to replace
the point associated with the minimum value on the simplex
by reflection of the nminimum point via a ray through the
centroid of the other points over a distance determined by a
reflection constant. A possible dimensional collapse oI the
simplex is avoided by special logic, and acceleration and
convergence are achieved, respectively, by expansion of tne
maximum point on the simplex on a ray from its centroid, or
contraction of the ainimum point on the simplex on a ray
toward the centroid.

This 1ingenious technique works much like the pattern
search methods examined above, and will almost always
terminate eventually by converging to a 1local wmaxinma.
Moditications of the scheme are possible with random
perturbations to mitigate near linear dependencies in the
simplex and to avoid final convergence to a local maximun.
Numerical bcunds can be accomodated on the parameters.
box[27] found the sigplical scheme superior to pattern
search and Rosenbrock's{206] method, and introduced the
"complex" search method, which is a generalization of the
simplical scheme to admit a convex inequality constraint
set. Richardson and Kuester{199] have published another
constrained simplical program. One weakness of the method
is the requirement for an interior To, but Noh{177], has

further generalized the complex search <for equality

constraints and non-interior starting points. Box refported
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1 that for his simpie models, opjective function evaluations

commonly required 1000 times as long as the complicated steog {

selection 1lcgic. Parkinson and Hutchinson[181] discuss the

.7

relative merits of variations of the simplical approach.

PP BN T SO

Although simplical schemes seem to work in practice, é
4 . even tor difficult problems, no acceptable formal procf of :
| convergence has yet appeared. The theoretical difficulty
seems to lie in (unconstrained) counter examples which «can E
be constructed and for which the method should not
terminate. For instance, see the cases given by Shere[211]
for the prcgram presented by Richardson and Kuester[ 199]. f

Realistically, however, confrontation of such special «cases

i

is higily unlikely. On the other hand, it is true that
dimensional collapse 1is a continuing theoretical and

numerical hazard 1in the presence of constraints. Finally,

Skt o o

; it should be noted that these are scarcely substantive
criticisms of the nmethod when it 1is used for adaptive

process control, as it was originally intended.

: Direct search methods whicn attempt to reliably achieve b

W ey

global maxima have been proposed by Brooks[29], Bocharov and {
Fel'dbaum[25] and Page[180]. These treat the objective i
functioa as an unknown but deterministic response tc the
arqument, T. The optimization proceeds Ly sequentiai.y
partitioning mutually exclusive and exhaustive regions for
" interior T over which the first two moments of the objective

function are estimated to discriminating precision by random !

sampling or numerical «quadrature over a k-dimensional

lattice, and a hypothesis test is performed to select the ;
better region, which is in turn bisected on the next step. )
The iteration ceases when an acceptably small region 1is

selected.

It is important to note the difference petween tnese

area evaluation methods and simple random point sampling.

35 i

GG Rt LAt o




et

T T T

rt‘?q——v—r—w T R N T A TN BT W A e e TI s
9

Without the partitioning scheme and sequential area
estimation and hypothesis tests, tnese methods degenerate to

the infamous Las Vegas technigque.

Each area selection nethod suffers from a
non-parametric probability of excluding the region
containing the global optimum at some intermediate decision
step and thus of unreliably reporting a surrogate, nonlocal
suboptimal solution. Geometric features such as an isolated
peak with steep slopes and a shallow base can evade
detection and can be caused by a poor choice of initial

feasible region for interior points.

Several authors, notably Clough({50], Cooper{55],
Hartley( 119], Hartman[ 120], Liau, Hartley, and Sielken[154],
and Zakharov[238) have developed statistical strategies for
region sampling and evaluation and conducted experiments
with standard objective functions. They report limited
success in actual applications. None of the applications
include a prcblem typical of M.L.E.

High frequency oscillations and other 1irregularities
which thwart other search techniques are smoothed and thus
mollified by this area approach. This smoothing
characteristic and the academically appealing global
strategy suggest the technigue for finding a reasonable
starting douwain for interior points for some other search
mechanism, especially if the latter iteration converges only
in a <close neighborhood of a maximum, or if the objective
function is pathological. Some experimentation has shown,
however, that excessive objective function evaluations were
necessitated for relatively small, uncomplicated sample

problenms.
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D. ASCENT METHODS

——— b em n - o ————

Most indirect schemes are characterized by an iteration

of the form

-1
T = T + al s, i=1,2, «.., o ,
i i-1

with a positive scalar step length, a, an iteration matrix

-1
M , and a vector of directional gradient information, s.

For instance, the first-order method of steepest ascent
first described by Cauchy[45], and later by Courant[56],
Curry[59]), and Levenberg[153], uses

§3115=VL(T),

and chooses the stepsize a as a suitable positive constant

to increase L(T) along the ray

T  + aIVL(T) .
i-1

4 ray pe chosen to produce a maximum along the ray by direct
evaluaticn, regula falsi, juadratic approximation, or simply
to produce any gain. This method ultimately terminates at a
local maxima, but often converges with slow performance,
especially along curved rising ridgyes for which it

hem-stitches with agonizing progress.

Further discussion of ascent methods 4s given by
Goldstein[101] and Ramsay[ 194]). Powell[190] and Brent[28]
give first-order ascent schemes using difference

approximations for derivatives, with due attention to the
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numerical and theoretical conseguences of such substitution.

A second-order scheme, the Newton-Raghson method,

applies
M= -H(T), s =VL(T), a = 1,

for which convergence terminstion depends wupon negative
definiteness of H(T). This condition on B(T) is usually
guaranteed only over a small neighborhood satisfying the
Lipschitz condition discussed by Henrici[123], which in
essence requires that L(T) behave nearly 1linearly in thae
vicinity of a maxima. The rate of convergence for fgroblems
that do successfully terminate is quadratic above the noise
level of machine calculations and it follows rising ridges
weli. However, this second-order scheme is renowned for its
progensities to seek saddle points and follow ridges out of
the vicinity of the feasible region. Also, computinag H can

be prohibitively expensive and imprecise for L(T),
2
requiring, as it commonly does, kX very extensive n-sums of

complicated nonlinear transcendental terms. (Not to speak
of the debugging effort in checking program 1logic and
algepra.) Goldstein and Price[103], have suggested
approximation of H by finite differences on L(T) 1in these
cases. Error analysis of the Newton-Raphson scheme 1is given

by Lancaster({ 148]).

Many methods have been proposed to give convergence
rates like those of Newton-Raphson and dependability of
Ssteepest ascent. Usually these involve forming an iteration
matrix, M, by various means in the 1interests of assuring

positive definiteness over the largest neighborhood.

The conjugate gradient method, iuvented by Hestenes and

Stiefelf 12617, applies an 1ingenious one-step memory by
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modiiying the stecpest ascent 1teration to the recursion

s = VL(T ) ¢+ (LUVL(T )II/1IQL(T ) 1l) s, P
i 1 1 1-1 i-1

with

= VL L(T -
80 v (To)/llV ( O)ll

This scheme avoids the notorious hem-stitch stalling of the
steepest ascent nmethod, even permitting finite convergence
proots for quadratic objective functions. The
ortnogonalized gradient vectors, and the conjugacy and
linear independence of the steps is achieved at very little
cost, without requiring maintenance of second order
information, such as H(T). Thus, second order convergence
can otten be achieved at very little additional
computational cost. The method was suggesteé for solving
linear systems by Hestenes and Stiefel[ 126] and implemented
for nonlinear objective functions later by Fletcher and
heeves[90]. A complete developnent is given Dy
Hestenes[ 124,125]. A convergence discussion and

modifications to the method are given by Daniel[60 ].

Fisnher[ 86)] gives the second-order method of scoring,
also discussed by Rao[197], which is specific to probleams in
whicn a 1log-likelihood function is maximized, and is
identical tc the Newton-Raphson method, except that the

Hessian is replaced by its expectation,
A= E[-H(T)] ,

where M is calied the information matrix, which Kendall and

Stuart{ 141,p.56)] show to always be positive definite, We
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see that the final 1teration asatrix for this schenme, g(?) -
is the Cramer-Rao bound for regular M.L.E. Vandaele and
Chowdhury{223] give some computationai examples and suggest
some wincr mcdifications for this approach. This metnod
reguires a fcrmal derivation of the expectdation of some very
complicated transcendentai suks in the Hessian matrix. An
example will serve to illustrate the scope of this problen

later.

Both the theoretical and nuwmerical perrormance of thesc
iteration methods can be 1aproved D»ny appropriate aftine
transformation of tne problem. For instance, see the recent
investiqation ot Amor{3]. Other techniques can be agplied
to insure crositive definiteness foc M. Various spectral
decompositions of N8 may Dpe used. Determination of
elgenvectors and associated eigenvalues of the real
symmetric matrix M 1is possible by several methods reviewed
by Schwarz, Putishauser and 5tiefel{209], along with syuare
root and Cholesky decompositions. Although diagonalization
and orthonormalization of H will eliminate local parameter
interaction, the neighborhood over which the result holds is
quite small for non-quadratic problems, making the
transfornation of yuestionable value when performed at the
high expense of the eigen-andalysis. If the condition nuaber
of H is defined as the ratio of the absolute values of the
laryest to the smallest eigenvalues, then a measure results
of botn topological distortion from an idealized
k-dimensional response sphere about T, and the difficulty
with wnich M will be accurately inverted{1¢7,78,133].

Advccates of the transformational approach have even
proposed introducing constraints on the eigenvalues of A,
for instance, replacing negative eligenvalues by tnelr
absolute values, and near-zero values by a smail constant

was progosed by Greenstadt{108] for maximization with a
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Newton-Raphson-like scheme. #with some difficulty we can
momentarily visualize the presence of a large condition
number implying the existence of a4 1long ridge or trough
oriented with the eigenvector associated with the eigenvalue
in the denominator. This 15 a good situation for a
second-order iteration scheme if the ridge is convex, wnich
1s the case when the eigenvalue in the denominator of tue
condition number is positive. This eilgenvalue constraint
method, and other similar proposals, attempt to mask the
concave ridges and saddle points which are also attractive
in the seccnd-order 1iteration. Bootnh and Peterson[26]

discuss such geometric inference at length.

A reasonable compromise is the simple scaling of N,
analgous to the <creation of a correlation matrix from a

covariance matrix. Let a scaling of M be performed by

1/2

N = [mij/lmiimjjt

with singularities m =0 replaced in the computation by 1.
3]

This can ease the burden of computing spectral

decompositions for the iteration matrix, and it can reduce

internal loss of numerical precision in the iteration

scheme.

In the same vein, a normalized gradient 1is sometinmes

applied

PL(D) = PL(T)/LIVL(T) LI ,
to keep computations numerically stable and place the
scaling turden on the scalar stepsize, a. Even though these

transformation methods are always avalilable and sometimes
useful, they are not emphasized in this presentation for
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simplicity. This 1s appropriate 1in part since the

investigator should always take care to reasonably scale any
problen regardless of the method employed to solve it.

TN Y T

i Levenburg[{153] prouposes a scheme which has since been
generalized and machine implemented by Margquardtg 164 ]. In

the development, a method is sought which will behave like

i ik e e g e e

steepest ascent in regqgions not local to the solation, and

RGEai L ol e

like Newton-Raphson when the solution is approached. The :

iteration matrix 1s chosen

i e it
i

¥ =-H(T) ¢+ ol ,

B

with m a positive constant. We see that no matter how ]
ill-conditivned B is, a suitably large choice for m will

give a numerically nonsingular iteration matrix.

AR e

(fhe nonsingularity of M 1is more apparent i we

momentarily consider the convex compination ;

E

B = -(1-a)H(T) + aI, 0sas<l . )

Y

FPor =0, this Maryuardt-Levenburg heuristic is the 1
Newton~-Raphscn metnod, and for m large this approaches tae 3
steepest ascent method. Marquardt gives a heuristic for #
modifying @ by a multiplicative expansion/reduction factor :

on the basis oi algovithm performance. A more formal method :

of determining m was later put forth by Smith and
Shanno{212], along with facility for handling linear

constraints by the projected aradient amethod of kosen[203].

i b et AT i S

Margquardt also introduces a uaseful termination

criterion for tolerance of resolution. With "{...|"
i denoting a k-vector of absolute values, this is
3
1
i
L2 1
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S

(X}

-n
{iT -T I € 10 (T + 10 ) , (4d +# a) 1In 10 < b,
m m-1 m-1 2

with 4 the number of significant digits of desired
resoluticn. b 1is the number of bits in the floating point
mantissa of the computer used, modified by the noise level

for one or two's complement arithmetic.

Another school of thought attempts to achieve
second-order convergence without evaluating H at each step
of the iteration. The iteratioun matrix, H, is assiduously,
and hoperfully, maintained as a negative definite substitute

-1
for H . Such variable metric methods, introduced by

Davidon[63], and discussed by Broyden{35], are 1in reality

more computationally efficient indirect ways of
approximating tae Hessian matrix by difzerencing as
suggested earlier by Golstein and Price[103]. These

approaches work by adding a correction matrix at each step

with C derived in several ways. Define
-1
AT =T - T = aM s = a0 VL(T) .,

A(VL(T)) = VL(Ti) - VL(Ti ) .
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as = A(VL(T)) .,

-1
then a rank-one correction for the iteration matrix, M , 1is

c = d4d'/AT'd ;
there are others, for instance see Householder{[ 130,p.123].

A rank-two correction for the iteration matrix,

developed by Davidon, and Fletcher and Powell[89], gives

-1 -1 -1
C = ATAT'/AT'As - B _ Asbs'M.  /As'H._ As .
1= 1~

i-1

An inverse rank-one correction proposed by Powell{191] and
Bard[ 12] uses

to give
Cc = cct'/AT'c .

Powell[ 191] suggests using

while Bard suggests

4u
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These rank-one methods have also veen discussed by
Greenstadt[ 1097, Fiacco and McCormick{ 83,p.170],
Cantrelil[43), Miele and Cantrell{168], Cragg and Levy{57],
Forsythe[92 ], Myers{(170], and many others, largely with the
objective of finding a stepsize with minimal expenditure and
avoiding singularities in M. Lili[ 155] presents a computer
program with some of these [eatures. Rank-two and other
variable metric schemes have Dbeen examined by Bard(11],
Davidon{ 64}, Goldfarb[(99], Matthews and Davies[1b65], Brown
and Dennis[33], and Broyden{ 36,229,230]), who gives evidence
against using transformations on the problem when in a near
neighborhocd to the solution under pain of stalling the
algorithum. On the other hand, Oren and Luenberger{178,179]
propose a self-scaling variable metric class of algorithams

with claims of excellent performance.

These methods have been compared with others intended
for the mcre general problem of solving a simultaneous set
of nonlinear equations by Barnes{13], Daniel(61], and
Broyden{ 34, 39]. For contrast, it 1s also instructive to

review earlier work by Davidenko[562], and Wolfe[235].

A further modificationu of seccnd-order schemes 1is
introduced in two excellent papers by Stewart{218], and Gill
and Murray(97], 1in which the gradient 1is estimated by
differences, and s'equential approximations of the Hessiabp
are made with great care in an attempt to balance truncation
errors, loss of numerical precision, and ill-conditioning in
the iteration matrix. These authors mention the numerical
singularities that can occur in the iteration matrix despite
theoretical guarantees to the contrary. Gill and Murray

propose the spectral decomposition known as Cholesky
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factorization for representing the symmetric Hessian. For L
a lower triangular matr.- and D a diagonal matrix, the
factorization produces

Definiteness for M is then assured by the careful monitoring
of diagonal elements of L and D.

Jones[136] gives a factorization for Marquardt's
schene. Jones, Ross[207)] and Bard[12], give compariscius of
the wvarious indirect iteration schenes, finding the
Marquardt and Davidon-Fletcher-Powell methods better in most
test prcblenms. Brooks{30] gives a review of ealier
unconstrained methods, as do Dennis[71], Powell[192],
Spang[215] and Kowalik and Osbormne[ 144 ].

46

PP R T R Ty




General constraints on the optimization proklem have
already been defined notationally along with
characterizations of optima under these conditions.
Algorithms permitting constraints are classifiable by the
admissable form of the constraints and tne associated
objective function. For instance, a linear constraint set
can Le treated with classical 1linear programming, L.P.,
methods if the objective function is approximated 1linearly.
Note that the L.P. includes mechanisms for the
determination of interior points, Ti' given any starting

value for TO. Prank and Wolfe[93] present such a
first-order algorithm, for linearly approximated objective

functions, stated for step 1i:

MAX VL(T, )'T, ,
T 1 1

which is solved via a standard L.P. step (treating VL(T. 1)
l-

as a fixed parameter vector}, reapproximated, and so forth.

Other similar approaches to the problem have been proposed
by Woltfe[236] who uses the Kuhn-Tucker conditions to
formulate a L.E. for a quadratic objective ifunction, while
Beale[ 16,17] and Zangwill[240] imbed the o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>